skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Runge, Jeffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The timing of biological events, known as phenology, plays a key role in shaping ecosystem dynamics, and climate change can significantly alter these timings. The Gulf of Maine on the Northeast U.S. Shelf is vulnerable to warming temperatures and other climate impacts, which could affect the distribution and production of plankton species sensitive to phenological shifts. In this study, we apply a novel data‐driven modeling approach to long‐term datasets to understand the population variability ofCalanus finmarchicus, a lipid‐rich copepod that is fundamental to the Gulf of Maine food web. Our results reveal how phenology impacts the complex intermingling of top‐down and bottom‐up controls. We find that early initiation of the annual phytoplankton bloom prompts an early start to the reproductive season for populations ofC. finmarchicusin the inner Gulf of Maine, resulting in high spring abundance. This spring condition appears to be conducive to enhanced predation pressure later in the season, consequently resulting in overall lowC. finmarchicusabundance in the fall. These biologically controlled dynamics are less pronounced in the outer Gulf of Maine, where water exchanges near the boundary have a greater influence. Our analysis augments existing hypotheses in fisheries oceanography and classical ecological theory by considering unique plankton life‐history characteristics and shelf sea dynamics, offering new insights into the biological factors drivingC. finmarchicusvariability. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Woodson, Brock (Ed.)
    Abstract The lipid-rich calanoid copepod, Calanus finmarchicus, plays a critical role in the Gulf of Maine pelagic food web. Despite numerous studies over the last several decades, a clear picture of variability patterns and links with key environmental drivers remains elusive. This study applies model-based scaling and sensitivity analyses to a regional plankton dataset collected over the last four decades (1977–2017). The focus is to describe the gulf-wide spatio-temporal patterns across three major basins, and to assess the relative roles of internal population dynamics and external exchanges. For the spring stock, there is strong synchrony of interannual variability among three basins. This variability is largely driven by internal population dynamics rather than external exchanges, and the internal population dynamics are more sensitive to the change of top-down mortality regime than the bottom-up forcings. For the fall stock, the synchrony among basins weakens, and the variability is influenced by both internal mortality and external dilution loss. There appears to be no direct connection between the spring stock with either the preceding or subsequent fall stock, suggesting seasonal or sub-seasonal scales of population variability and associated drivers. The results highlight seasonally varying drivers responsible for population variability, including previously less recognized top-down control. 
    more » « less
  3. Abstract AimOne of the primary characteristics that determines the structure and function of marine food webs is the utilization and prominence of energy‐rich lipids. The biogeographical pattern of lipids throughout the ocean delineates the marine “lipidscape,” which supports lipid‐rich fish, mammal, and seabird communities. While the importance of lipids is well appreciated, there are no synoptic measurements or biogeographical estimates of the marine lipidscape. Productive lipid‐rich food webs in the pelagic ocean depend on the critical diapause stage of large pelagic copepods, which integrate lipid production from phytoplankton, concentrating it in space and time, and making it available to upper trophic levels as particularly energy‐rich wax esters. As an important first step towards mapping the marine lipidscape, we compared four different modelling approaches of copepodid diapause, each representing different underlying hypotheses, and evaluated them against global datasets. LocationGlobal Ocean. TaxonCopepoda. MethodsThrough a series of global model runs and data comparisons, we demonstrated the potential for regional studies to be extended to estimate global biogeographical patterns of diapause. We compared four modelling approaches each designed from a different perspective: life history, physiology, trait‐based community ecology, and empirical relationships. We compared the resulting biogeographical patterns and evaluated the model results against global measurements of copepodid diapause. ResultsModels were able to resolve more than just the latitudinal pattern of diapause (i.e. increased diapause prevalence near the poles), but to also pick up a diversity of regions where diapause occurs, such as coastal upwelling zones and seasonal seas. The life history model provided the best match to global observations. The predicted global biogeographical patterns, combined with carbon flux estimates, suggested a lower bound of 0.031–0.25 Pg C yr−1of downward flux associated with copepodid diapause. Main conclusionsResults indicated a promising path forward for representing a detailed biogeography of the marine lipidscape and its associated carbon flux in global ecosystem and climate models. While complex models may offer advantages in terms of reproducing details of community structure, simpler theoretically based models appeared to best reproduce broad‐scale biogeographical patterns and showed the best correlation with observed biogeographical patterns. 
    more » « less
  4. Abstract The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role ofAmmodytesto inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role ofAmmodytesin the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consumeAmmodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution ofAmmodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment ofAmmodytesin the NWA and are intended to inform new research and support regional ecosystem‐based management approaches. 
    more » « less